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1 | INTRODUCTION

Kristin B. Artinger?

Summary

Craniofacial and limb defects are two of the most common congenital anomalies in
the general population. Interestingly, these defects are not mutually exclusive. Many
patients with craniofacial phenotypes, such as orofacial clefting and craniosynostosis,
also present with limb defects, including polydactyly, syndactyly, brachydactyly, or
ectrodactyly. The gene regulatory networks governing craniofacial and limb develop-
ment initially seem distinct from one another, and yet these birth defects frequently
occur together. Both developmental processes are highly conserved among verte-
brates, and zebrafish have emerged as an advantageous model due to their high
fecundity, relative ease of genetic manipulation, and transparency during develop-
ment. Here we summarize studies that have used zebrafish models to study human
syndromes that present with both craniofacial and limb phenotypes. We discuss the
highly conserved processes of craniofacial and limb/fin development and describe
recent zebrafish studies that have explored the function of genes associated with
human syndromes with phenotypes in both structures. We attempt to identify com-
monalities between the two to help explain why craniofacial and limb anomalies

often occur together.

KEYWORDS
craniofacial, human clinical genetics, limb, zebrafish model

syndrome (MIM #101200), Pfeiffer syndrome (MIM #101600), Rob-
erts syndrome (MIM #268300), and Saethre-Chotzen syndrome (MIM

Structural birth defects, including craniofacial and limb anomalies,
affect 3% of newborns in the United States (Update on Overall Preva-
lence of Major Birth Defects, 2008). Human craniofacial defects occur
in 1 in every 500-1,000 live births, with orofacial clefts being the
most common (1:700) (Byvaltsev, Belykh, & Belykh, 2012; Global reg-
istry and database on craniofacial anomalies, 2001), while congenital
limb disorders affect 1 in 1,000-2,000 newborns (Vasluian et al.,
2013; Wilcox, Coulter, & Schmitz, 2015). Interestingly, these anoma-
lies are not mutually exclusive. Many patients with craniofacial anom-
alies also present with upper and/or lower limb defects, such as
syndactyly (digit fusion), ectrodactyly (missing digits), polydactyly
(extra digits), and/or brachydactyly (shortening of the hands/feet).
Syndromes that present with defects in both structures include Apert

#101400) among others (Table 1). This may be due to the synchro-
nous timing of their development (Panthaki & Armstrong, 2003).
Others have proposed that paired limbs/fins are evolved from gill or
pharyngeal arch skeletal elements, components of which give rise to
the craniofacial skeleton (Gegenbaur, 1878). These studies suggest
that there is a deep homology between the two structures. Many pub-
lished reviews have thoroughly discussed vertebrate craniofacial or
limb development separately and described how genetic or environ-
mental factors can lead to congenital defects (Mercader, 2007; Mork &
Crump, 2015; Petit, Sears, & Ahituv, 2017; Szabo-Rogers, Smithers,
Yakob, & Liu, 2010; Twigg & Wilkie, 2015; A. Zuniga, 2015); however,
to our knowledge, no one has adequately explored how or why cra-

niofacial and limb anomalies often occur together.
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(Continued)

TABLE 1

Zebrafish pectoral fin

Zebrafish craniofacial

Zebrafish
ortholog

Inheritance Major human craniofacial/

Human

Reference

Experimental assays

phenotypes

phenotypes

Model

limb phenotypes

pattern

gene

Syndrome

See above.

See above.

See above. See above.

irfé See above.

Orofacial cleft; lower lip

AD

IRF6°

Van der Woude syndrome 1

pits and/or sinuses;

(MIM #119300)

hypodontia; syndactyly

RNA ISH; skeletal staining;  (Dworkin et al., 2014)

Hypoplastic: Pectoral

Hypoplastic/deformed:

MO

grhi3

Orofacial cleft; lower lip

AD

GRHL3

Van der Woude syndrome Il

electron microscopy;

find

Ceratohyal; ceratobranchial

pits and/or sinuses;

(MIM #606713)

TUNEL assay; micro-

arches; palatoquadrate;

hypodontia; syndactyly

ChlIP assay; EdU assay;

Meckel's cartilage; ethmoid

plate,

Absent: Ceratobranchial arches

(Peyrard-Janvid et al., 2014)

RNA ISH

N/A

N/A

DN mRNA OE

(Miles et al., 2017)

IHC

N/A

N/A

MO; LOF CRISPR-Cas9 mutant

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; ChIP, chromatin immunoprecipitation; DN, dominant negative; EMSA, electrophoresis mobility shift assay; GOF, gain-of-function; H&E, hematoxylin and eosin; IHC, immunohistochemistry; ISH, in situ

RNA hybridization; LOF, loss-of-function; MIM, Mendelian Inheritance in Man number; MO, morpholino; N/A, not applicable; OE, overexpression; RNA-FISH, RNA fluorescent in situ hybridization; RT-qPCR, real-time quantitative polymerase chain reaction; TALENS,

transcription activator-like effector nucleases; XLD, X-linked dominant.

2FGFR2 variants are thought to cause nonspecific craniosynostosis and are associated with multiple different craniofacial syndromes.

PFGFR3 variants are associated with multiple different craniofacial syndromes.

“IRFé variants are associated with both popliteal pterygium syndrome and Van der Woude syndrome.

d0ur interpretation of the structure of the pectoral fin based on the Alcian blue skeletal staining images provided in the article.

In this review, we analyze syndromes that present with both cra-
niofacial and limb defects, and we focus specifically on those that
have been studied using a zebrafish model. Zebrafish serve as a useful
developmental model to study these syndromes because they are rel-
atively easy to genetically modify, inexpensive to maintain, reproduce
and develop quickly, and the transparency of the embryo allows for
live imaging in vivo. The zebrafish skeleton is also simpler, with fewer
structural elements and larval cartilages are only a few cell layers
thick, making them easier to visualize. Its pectoral and pelvic fins are
homologous to mammalian forelimbs and hindlimbs, respectively
(Grandel & Schulte-Merker, 1998). Most of the gene regulatory net-
works involved in both craniofacial and limb/fin development are
highly conserved between zebrafish and mammals. The information
obtained from zebrafish studies can provide valuable insight into
human development. First, we will very briefly describe the processes
governing craniofacial and limb/fin development as a preface. Then
we will highlight recent studies that have used zebrafish to uncover
the mechanism(s) by which certain genes cause syndromes with cra-
niofacial and limb defects. We hope to identify common themes and
mechanisms that can help explain why these two defects often occur

together.

2 | BRIEF OVERVIEW OF CRANIOFACIAL
AND LIMB DEVELOPMENT

21 | Craniofacial development

Much of the facial skeleton is derived from cranial neural crest cells.
Neural crest cells (NCCs) are a multipotent population of cells that
originate at the dorsal most part of the neural tube. During develop-
ment, NCCs undergo an epithelial-mesenchymal transition to delami-
nate from the neural tube, migrate to different regions of the body,
and differentiate into specific cell types. Cranial NCCs are a subpopu-
lation of NCCs that migrate from the neural tube into the pharyngeal
arches and the facial prominences. They interact with head mesoderm
in response to signals from the ectoderm and endoderm to differenti-
ate into cartilage, bone, cranial neurons, glia, and connective tissues to
form the frontonasal skeleton, jaw, odontoblasts of the teeth, middle
ear, glia, and cranial neurons.

The skull is divided into two structures, the viscerocranium and
neurocranium. The viscerocranium forms the lower part of the skull
and supports the structure of the face. It is comprised entirely of
NCCs from the pharyngeal arches (Kague et al., 2012; Morriss-Kay,
2001). Each pharyngeal arch gives rise to different structures. The first
arch forms the lower jaw (mandibular domain) and the palate (maxil-
lary domain); the second arch (hyoid) forms the ceratohyal and
hyomandibular bones, which connect the lower jaw to the neuro-
cranium; and in zebrafish, the third through the seventh arches give
rise to the ceratobranchial cartilages, which support the gill tissues
(Schilling & Kimmel, 1997) (Figure 1a,c). In mammals, these posterior
arches form laryngeal cartilage. Interestingly, parts of the zebrafish
jaw and hyoid skeleton are evolutionarily homologous to the mamma-
lian middle ear bones. More specifically, the Meckel's cartilage and



TRUONG anp ARTINGER

= LwiLey-[EE

Zebrafish

(

Q
~

Cranial skeleton
Lateral view

—
(¢)
~

mep

Neurocranium
dorsal view

—_
D
~

[2)
2=
28
> =
T 3
c
R
S
(B}

Anterior €«—) Posterior

FIGURE 1

Mammals

(b)

Middle ear

—
o
~—"

Palate
dorsal view

—_
—h
N

Cranial sutures
dorsal view

Homologous craniofacial structures between zebrafish and mammals. (a) Lateral view of zebrafish head skeleton. The posterior

end of the Meckel's cartilage, the palatoquadrate and hyosymplectic cartilage are homologous to structures in the mammalian middle ear,
particularly the malleus, incus, and stapes bone (b). (c) Dorsal view of the zebrafish neurocranium, which is analogous to the mammalian palate (d).
(e,f) Dorsal view of the zebrafish and mammalian cranial sutures. Homologous structures have the same color, and analogous structures have
added hashmarks. Adapted from Mork and Crump (2015). ¢, cochlea; cbs, ceratobranchial arches #1-5; ch, ceratohyal; cs, coronal sutures; ed, ear
drum; ep, ethmoid plate; fr, frontal bones; hs, hyosymplectic cartilage; i, incus; ifs, interfrontal sutures; Is, lambdoid sutures; m, Meckel's cartilage;
ma, malleus; mep, medial ethmoid plate; n, notochord; oc, occipital bone; pa, parietal bones; pch, parachordal; pp, primary palate; pq,
palatoquadrate; ps, parasphenoid; so, supraoccipital bone; sp, secondary palate; ss, sagittal sutures; st, stapes bone; tr, trabecula

part of the palatoquadrate are homologous to the malleus and incus
of the middle ear, while the hyomandibula portion of the
hyosymplectic cartilage is homologous to the stapes bone (Figure 1a,
b) [reviewed in Anthwal, Joshi, & Tucker, 2012, Mork & Crump,
2015]. Molecular mechanisms governing lower jaw development have
been well-studied in both mice and zebrafish. For a more detailed
review, we refer to Clouthier, Garcia, and Schilling (2010) and
Santagati and Rijli (2003). One of the most critical factors in lower jaw
endothelin-1  (Edn1) through the

endothelin-A receptor (Ednra) (schematic in Figure 2a). In zebrafish,

development s signaling

loss of edn1 leads to a severe truncation of the Meckel's cartilage, a

loss of the ceratohyal bone, and a homeotic transformation of the

lower jaw to an upper jaw (Kimmel, Ullmann, Walker, Miller, & Crump,
2003; Miller, Schilling, Lee, Parker, & Kimmel, 2000). Similar pheno-
types are observed in Edn1-/- and Ednra-/—- mice, suggesting that
their roles in craniofacial development are conserved (Clouthier et al.,
1998; Kurihara et al., 1994). Endothelin signaling is required for down-
stream expression of DIx5/DIx6, as well as DIx3 and Hand2 in the
ventral most part of the pharyngeal arch. The dix homeobox genes are
important for establishing the dorsal/ventral axis in craniofacial devel-
opment and are further regulated by Mef2c (Miller et al., 2007).
nkx3.2 (bapx1) is an additional homeobox gene that regulates genes
involved in jaw joint formation. Its expression is limited to the inter-

mediate region of the pharyngeal arch, and it is repressed by Hand2 in
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FIGURE 2 Molecular mechanisms
governing lower jaw and cranial suture

development. (a) Simplified schematic of

endothelin-1 signaling in the first
pharyngeal arch during lower jaw
development. Endothelin signaling is
required for downstream expression of
DIx homeobox genes, which are required
for dorsal/ventral patterning, and Hand2,
which represses Nkx3.2 in the ventral
region of the pharyngeal arch. Nkx3.2 is
also regulated by Bmp4 in the most dorsal
part of the arch and Fgf8 in the ectoderm.

(@)

(b) Schematic of genes and pathways - %
involved in cranial suture development. % e
Twist1 is capable of forming homodimers G 8
(T/T) and heterodimers with E proteins T =
(T/E). These two forms act % (—;
antagonistically with one another to £
regulate FGFR2 activity, downstream 6 -8
BMP signaling, osteogenic differentiation, i g

and suture closure. ID, inhibitor of DNA

Distal

Intermediate

Edn1/
Ednra1/2

Mef2c l

t—— GrhI3

DIx
DIx5/DIx6

l

binding; ph, pharyngeal arch; T/E, Twist1 Ectoderm Hand2 - S
heterodimer; T/T, Twist1l homodimer
(b) Parietal Osteogenic Cranial Suture Osteogenic Frontal
Bone Front Mesenchyme Front Bone
Twist1 Twist1

Cranial sutures

the ventral region, Fgf8 in the oral epithelium, and Bmp4 in the distal
pharyngeal arch (Miller, Yelon, Stainier, & Kimmel, 2003; Miyashita
et al., 2020; Wilson & Tucker, 2004). DLX5/DLX6 and NKX3.2 are also
involved in human limb development. Variants are associated with
(MIM  #183600)
megaepiphyseal-metaphyseal dysplasia (MIM #613330), respectively.

split hand/foot malformation and spondylo-

The neurocranium is composed of both cranial NCCs and meso-
derm and protects and supports the brain (Wada et al., 2005). Cranial
NCCs in the maxillary domain of the first pharyngeal arch give rise to
the palate after cells migrate medially to converge at the midline of
the roof of the mouth. In mammals, palatal shelves composed of cra-
nial NCCs grow and converge at the midline to form an epithelial
seam, while the primary and secondary palates fuse to create the pala-
tal skeleton (Figure 1d). The zebrafish palate is located in the anterior
part of the neurocranium and consists of the ethmoid plate, trabecu-
lae, and parasphenoid bone (Figure 1c). Orofacial clefting occurs when

the palatal shelves fail to come together. Clefting, truncation,

T/T— Fgfr2 ——T/E —Tsp-1

N !

Noggin TGF-B

o %

BMP

Eph/ l
Ephrin™ Msx2

L

Runx2

hypoplasia, or the absence of these structures is indicative of orofacial
clefting in zebrafish (Dougherty et al.,, 2013; Eberhart et al., 2008;
Swartz, Sheehan-Rooney, Dixon, & Eberhart, 2011; Wada et al.,
2005). It is still unclear whether cranial NCCs that form the palate fuse
in zebrafish as well or if they are differentiating in a posterior to ante-
rior pattern (Dougherty et al, 2013; Swartz et al, 2011). Early
palatogenesis is conserved among vertebrates. Mice and zebrafish
share similar expression patterns of critical genes involved in palate
formation in the anterior maxillary domain (msxe, bmp4, bmp2b, and
fgf10a) as well as the posterior maxillary domain (tbx22, osr1, osr2,
pax%a) (Braybrook et al., 2002; Peters, Neubuser, Kratochwil, &
Balling, 1998; Swartz et al, 2011) [reviewed in (Hilliard, Yu, Gu,
Zhang, & Chen, 2005). They also utilize the same signaling pathways,
such as Fgf, Pdgfr, Bmp, Tgfb, Wnt, and Shh, and disruptions to any of
these pathways result in craniofacial defects, particularly in the ante-
rior neurocranium (Dougherty et al, 2013; Eberhart et al., 2008;
Swartz et al, 2011; Wada et al., 2005). For example, fgf10a is
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expressed throughout the oral ectoderm and knocking down this gene
produces a shortened trabeculae and parasphenoid bone and a
misshapen Meckel's cartilage and palatoquadrate (Swartz et al., 2011).
Fgf10a regulates Shh signaling, which is critical for cranial NCC migra-
tion to the midline and induction of chondrogenesis. Loss of Shh in
zebrafish causes inappropriate fusion of the trabeculae (Wada et al.,
2005). Interestingly, Fgf10a and Shh are both critical for limb develop-
ment as well (see below). Loss of either gene leads to defects in the
pectoral fin, which is homologous to mammalian forelimbs (Swartz
et al,, 2011; van Eeden et al., 1996). Although early development of
the mammalian and zebrafish palates appear genetically similar with
similar patterning formation, there are distinct morphogenic differ-
ences at later stages, warranting caution when comparing zebrafish
and mammalian palatogenesis [reviewed in (Bush & Jiang, 2012)].

The skull vault of the neurocranium has five bones that are con-
nected by cranial sutures, or fibrous tissues. The anatomical structure of
the skull vault and its cranial sutures is conserved between humans and
zebrafish (Figure 1ef). The sutures are patent in early development, pro-
viding room for the skull and brain to grow. The timing of suture closure
differs as human sutures are only patent during early childhood whereas
zebrafish sutures remain patent throughout the life of the fish
(Quarto & Longaker, 2005). The molecular mechanisms dictating cranial
suture formation and closure are conserved among vertebrates, render-
ing zebrafish a useful model for studying craniosynostosis, a common
skeletal defect that occurs when cranial sutures prematurely fuse
(Quarto & Longaker, 2005; Topczewska, Shoela, Tomaszewski,
Mirmira, & Gosain, 2016) [reviewed in (Holmes, 2012)]. The skull stops
growing perpendicular to the fused suture and compensates by growing
in a parallel fashion. Therefore, patients with craniosynostosis have
abnormally shaped skulls. Most cases of craniosynostosis are caused by
genetic variants in TWIST1, FGFRs, and EFNB1 among other genes
[reviewed in Wu & Gu, 2019]. Twistl is a transcription factor that is
expressed in either the osteogenic front as a homodimer (T/T) or as a
heterodimer with E proteins (T/E), such as Tcf12, in the mesenchymal
cells of cranial sutures (schematic in Figure 2b). These two forms of
Twist1 act in opposition to one another. The T/T homodimers activate
FGFR2 and promote osteogenic differentiation by increasing BMP sig-
naling as well as Msx2 and Runx2 expression. This leads to suture clo-
sure. In contrast, the T/E heterodimer represses FGFR2, preventing
osteogenesis and suture closure. The ratio of Twistl homodimer to
heterodimer changes over time as an organism grows and develops. An
untimely excess of T/T homodimer leads to increased FGFR2 expres-
sion, decreased Eph/Ephrin signaling, an inappropriate influx of neural
crest cells to the paraxial mesoderm, and craniosynostosis (Connerney
et al., 2008; Merrill et al., 2006).

Later in this review, we summarize studies that have used
zebrafish to study syndromes with craniofacial anomalies, including
orofacial clefting and craniosynostosis.

2.2 | Limb development

The zebrafish pectoral and pelvic fins are homologous to mammalian
forelimbs and hindlimbs, respectively. Limb growth begins at the

lateral plate mesoderm, where mesenchyme precursors form a small
bud surrounded by an ectodermal layer (schematic in Figure 3d). Ret-
inoic acid is synthesized in the surrounding somites and, along with
Wnht signaling, establishes the limb field and initiates limb induction
(Grandel et al., 2002; Ng et al., 2002). Fgf signaling is required for
the formation and function of the apical ectodermal ridge (AER)
(Niswander, Tickle, Vogel, Booth & Martin 1993; Sekine et al., 1999;
Sun, Mariani, & Martin, 2002), which regulates limb outgrowth and
establishes the proximodistal axis (shoulder to digits) (Saunders,
1948). Transcription factors Tbx5 (Agarwal et al., 2003; Ng et al,,
2002) and p63 (Bakkers et al., 2002) induce Fgf signaling in the mes-
enchyme and AER. This establishes a complex epithelial-
mesenchymal feedback loop that activates proliferation and differ-
entiation of mesenchymal cells resulting in limb outgrowth (Ohuchi
et al., 1997). Fgf signaling in the AER is negatively regulated by BMP
signaling (Niswander & Martin, 1993; Pajni-Underwood, Wilson,
Elder, Mishina, & Lewandoski, 2007; Pizette & Niswander, 1999).
Moreover, BMP signaling is required for interdigital programmed cell
death and preventing finger webbing as well as polydactyly (Pajni-
Underwood et al., 2007; Selever, Liu, Lu, Behringer, & Martin, 2004).
The anterior/posterior axis (digits 1-5) is established by Shh signal-
ing in the zone of polarizing activity (ZPA) (Riddle, Johnson, Laufer, &
Tabin, 1993; Saunders & Gasseling, 1968). Shh also regulates and is
regulated by Fgf signaling in the AER (Laufer, Nelson, Johnson, Mor-
gan, & Tabin, 1994; Niswander, Jeffrey, Martin, & Tickle, 1994). The
dorsal/ventral axis (back of hand to palm) is dictated by expression
of Wnt7a (dorsal) and Enil(ventral) (Davis, Holmyard, Millen, &
Joyner, 1991; Gardner & Barald, 1992; Loomis, Kimmel, Tong,
Michaud, & Joyner, 1998; Parr & McMahon, 1995). Each gene and
pathway are interconnected, and dysregulation at any point can
cause abnormal limb growth [reviewed in (Kantaputra & Carlson,
2019)] (Figure 3d).

The first skeletal elements to form in the zebrafish pectoral fin
bud are the scapulocoracoid, postcoracoid, and endoskeletal disk,
which are all derived from fin mesenchymal cells. By 4 dpf (days post
fertilization), collagenous rays called actinotrichia form and act as sup-
portive elements for the fin fold (Figure 3a). This larval endoskeleton
structure persists for several weeks until cells in the endoskeletal disk
proliferate and expand the fin. The cartilage matrix of the intermedi-
ate larval structure decomposes, and at 23 dpf (7.1 mm standard
length), rod-like dermal bones called lepidotrichia, or fin rays, form. By
28 dpf (9.5 mm), the endoskeletal disk splits to form four proximal
radial bones. There are also six to eight distal radial bones located
above and distal to the proximal radials that later fuse to the lep-
idotrichia (Grandel & Schulte-Merker, 1998) (Figure 3b). The pelvic
fins do not begin formation until 18 dpf (6 mm), and their develop-
ment is similar to that of pectoral fins. The main difference is that the
pelvic fin bud develops more quickly and does not require an interme-
diate larval endoskeleton before the terminal adult fin structure
(29 dpf, 10.1 mm). For a more detailed description of the anatomy of
zebrafish fin development, we refer to Grandel and Schulte-
Merker (1998).

Morphologically, zebrafish fins and mammalian limbs are distinct
from one another, and it is difficult to assign which elements are truly
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FIGURE 3 The gene regulatory

networks involved in zebrafish and

mammalian limb development are highly (a)
conserved. The zebrafish pectoral fin,

shown at 4 days post fertilization (a) and

adulthood (b), is homologous to the ed
mammalian forelimb (c). (d) Schematic of \
genes and pathways involved in early )

limb development. Limb bud initiation -~
sc

pc

begins with retinoic acid (RA) signaling in ac

the surrounding somites (teal). This then
leads to the initiation of Fgf signaling in
the mesoderm and ectoderm and limb
bud growth at the lateral plate mesoderm.
The AER (navy) dictates outgrowth and
the proximal/distal axis; the ZPA (purple)
determines the anterior/posterior axis;
and WNT7A/EN1 (green) establish the
dorsal/ventral axis. As such, each gene
and pathway are interconnected and rely
on one another for proper limb growth.
Abbreviations: ac, actinotrichia; AER, (d)
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homologous [reviewed in (Yano & Tamura, 2013)] (Figure 3a-c). Nev-
ertheless, the conservation of the gene regulatory networks indicates
that they are still a useful model for limb development. Researchers
can examine the larval pectoral fin (4-5 dpf) and look for deformities
in the shape and length of cartilage structures. If a mutant survives to
adulthood, researchers can look more closely at the bones that
develop later and use them as a model for human limb bones. Differ-
ences in the number of proximal radial bones, number of distal radial
bones, or the length of lepidotrichia can be indicators of human poly-
dactyly (more bones), ectrodactyly (fewer bones), or brachydactyly
(shortening of bones). Medaka fish (Oryzias latipes) has been used by
Letelier et al. (2018) to model human ectrodactyly caused by
decreased SHH signaling by partially deleting an upstream shh limb
enhancer known as ZRS. This deletion leads to a decrease in proximal

radial bones from four to two in adult fish. Below, we discuss ways in

which zebrafish have been used to study human craniofacial and limb

defects.

3 | ZEBRAFISH MODELS OF
CRANIOFACIAL ANOMALIES WITH
ACCOMPANYING LIMB DEFECTS

Structures of the craniofacial and limb skeleton are clearly distinct
from one another, but they utilize many of the same gene regulatory
networks and mechanisms for their development, such as Fgf, Bmp,
Whnt, and Shh signaling. It follows then that several human congenital
syndromes caused by single gene variants present with defects in
both structures (Panthaki & Armstrong, 2003). Here we will describe a
few examples in which zebrafish were used to study specific
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syndromes characterized by orofacial clefting, craniosynostosis, and
limb defects. Orofacial clefting and craniosynostosis are the two most
common craniofacial phenotypes, so our primary focus is here. A full
list of craniofacial and limb human syndromes that have been modeled
with zebrafish can be found in Table 1. Some of these studies
explored different phenotypes associated with the syndrome. For
example, Fuller et al. (2014) use zebrafish to model the left/right pat-
terning defects observed in patients with Carpenter syndrome | (MIM
#201000). We have chosen to highlight studies that specifically stud-

ied genes in the context of craniofacial and/or limb development.

3.1 | Orofacial clefting and missing/fused digits
Orofacial clefting, namely cleft lip with or without cleft palate, is the
most common craniofacial anomaly occurring in 1 in 700 newborn
babies (Global registry and database on craniofacial anomalies, 2001).
Cleft palate occurs in humans when the palatal shelves fail to elevate
or properly fuse at the midline. As mentioned above, the zebrafish
ethmoid plate is often used to model the mammalian palate. For a
comprehensive review on zebrafish models of orofacial clefting we
refer to Duncan, Mukherjee, Cornell, and Liao (2017). Here, we will
discuss recent zebrafish studies of syndromes that present with both
orofacial clefting and limb defects, primarily ectrodactyly (missing
digits) and syndactyly (fused digits).

3.1.1 | Roberts syndrome

Roberts syndrome (MIM #268300) is an autosomal recessive disorder
characterized by orofacial clefting, micrognathia (hypoplastic jaw),
downward slanting, wide-set eyes, a beaked nose, microcephaly,
hypoplastic limbs, syndactyly, and joint deformities (Roberts, 1919).
Using multipoint linkage analysis, Vega et al. (2005) found eight differ-
ent homozygous variants in ESCO2 in affected individuals. ESCO2 is a
highly conserved gene that encodes an N-acetyltransferase required
for holding sister chromatids together after DNA replication and
before mitosis (Rolef Ben-Shahar et al., 2008). In zebrafish, esco2 is
expressed in the branchial arches and pectoral fins, as well as brain
ventricles, optic vesicles and retinal cells during early development
(Monnich et al, 2011). Partial knockdown of esco2 in zebrafish
morphants (organisms treated with morpholino antisense oligonucleo-
tides to knockdown gene expression) leads to disorganized craniofa-
cial cartilage and hypoplastic jaw elements as well as shortened,
abnormally shaped pectoral fins. This is due to cells being blocked at
the onset of mitosis, leading to increased cell death. esco2 morphant
cells in mitosis have distorted, disorganized mitotic spindles, likely
from the instability of the sister chromatids (Vega et al., 2005). Consis-
tent with this study, stable esco2—-/— mutants created with CRISPR-
Cas9 also have smaller heads, missing pectoral fins, and increased
apoptosis, particularly at the neural tube (Percival et al., 2015). This
group observed that cells are trapped in mitosis. Indeed, after the

nuclear envelope breaks down, chromosomes in esco2—-/— mutants

scatter and are not captured on the metaphase plate, blocking mitosis
from proceeding. This leads to aneuploidy and/or micronuclei and the
cells are forced to undergo apoptosis. The craniofacial and limb
defects, particularly the hypoplastic jaw and limbs, observed in
patients from loss of ESCO2 are hypothesized to result from increased
cell death, based on these zebrafish studies.

3.1.2 | Vander Woude syndrome

Van der Woude syndrome is an autosomal dominant disorder caused
by variants in either IRFé (MIM #119300) (Burdick, Bixler, & Puckett,
1985; Kondo et al., 2002) or GRHL3 (MIM #606713) (Peyrard-Janvid
et al, 2014). Patients present with orofacial clefting, lower lip pits
and/or sinuses, hypodontia, and syndactyly.

IRF6 is a member of the interferon regulatory transcription factor
family. In zebrafish larvae, it is expressed in the pharyngeal arches and
in the epithelial cells of the mouth, esophagus, and pharynx, as well as
the olfactory and otic placodes (2-72 hpf) (Ben et al., 2005). Expres-
sion of irf6 in the pectoral fin has not yet been shown; however, injec-
tion of a dominant-negative form of irf6 RNA into zebrafish embryos
at the single-cell stage leads to shortened/loss of the pectoral fin as
well as hypoplastic, disorganized craniofacial elements and a clefted
ethmoid plate (Sabel et al., 2009). Dougherty et al. (2013) created sta-
ble, dominant-negative irfé6 mutants driven by a sox10 promoter to
limit mutant expression to NCCs. With time-lapse imaging, they show
that chondrocytes at the median and lateral ethmoid plate fail to come
together in mutants, creating a cleft (Dougherty et al., 2013). Similarly,
Irf6—/— mutant mice have clefting in the secondary palate and a hypo-
plastic snout and jaw (Ingraham et al., 2006). Irf6 is thought to be
involved in endothelin signaling during palate formation (Fakhouri
et al,, 2017). The clefting phenotypes observed in zebrafish and mice
are consistent with what is seen in Van der Woude patients and dem-
onstrate an important role for IRFé in palatogenesis.

grhi3 is a transcription factor selectively expressed in the non-
neural ectoderm as well as endoderm pouches surrounding the phar-
ynx of developing zebrafish embryos. Knockdown of grhi3 causes
severe hypoplasia of the palatoquadrate, ceratohyal, and Meckel's car-
tilage and loss of the ceratobranchial arches and pectoral fins
(Dworkin et al., 2014). There is increased cell apoptosis in the pharyn-
geal arches with loss of grhl3. Using a micro-ChlIP assay, Dworkin
et al. (2014) found that Grhi3 directly binds to the promoter of edn1, a
highly conserved gene required for lower jaw development (Clouthier
et al., 1998; Miller et al., 2000). Expression of ednl and its known
downstream targets, hand2 and dlIx3, are significantly reduced in the
endoderm of grhi3 morphants. Importantly, injection of edn1 mRNA
into grhI3 morphants rescues hand2 and dix3 expression as well as the
craniofacial and limb skeletons (Dworkin et al., 2014). It is thought
that grhi3 is required for edn1 expression in the pharyngeal endoderm,
which is then important for NCC growth and proliferation and
palatogenesis.

irf6 and grhi3 are likely required for limb development in

zebrafish, as shown by the loss of pectoral fins in different models,
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but their roles remain unclear. During mammalian development, loss
of either Irf6 or Grhil3 results in shortened forelimbs, ectrodactyly, or
syndactyly (Ingraham et al., 2006; Kashgari et al., 2020). Irf6 is thought
to be required for formation of the periderm, a single layer of epithe-
lial cells surrounding the embryonic epidermis. In mice, Irf6 directly
regulates transcription of Grhl3 (de la Garza et al., 2013), which was
recently shown to be required for digit separation (Kashgari et al.,
2020). It is unknown whether the interaction between irf6 and grhi3
during limb formation is conserved and if this accounts for the loss of

pectoral fins seen in zebrafish.

3.1.3 | Ectrodactyly-ectodermal dysplasia-clefting
syndrome 3 (EEC3)

Ectrodactyly-ectodermal dysplasia-clefting syndrome 3 (EEC3) (MIM
#604292) is an autosomal dominant disorder caused by mutations in
TP63, a transcription factor and member of the TP53 family (Celli
et al,, 1999). EEC3 is characterized by orofacial clefting, ectrodactyly,
and ectodermal dysplasia such as hypopigmented, scaly skin and mal-
formed/decayed teeth (Penchaszadeh & de Negrotti, 1976). TP63 is
transcribed from two different promoters, creating two isoforms of
the gene, Tap63 and ANp63, which then act as an activator or repres-
sor, respectively (Yang et al., 1998). Zebrafish studies have shown that
knockdown of the dominant negative repressive isoform, ANpé3,
results in loss of the pectoral fin and a decrease in proliferation in the
epidermis (Bakkers et al., 2002; Lee & Kimelman, 2002). p63 loss-of-
function mutants (tp63—/-) created with CRISPR-Cas9 recapitulate
this phenotype (Santos-Pereira et al.,, 2019). Unfortunately, the
authors did not note any craniofacial defects in the tp63—/— mutants,
and this is likely due to the larvae dying between 40-50 hours post
fertilization (hpf). tp63—/— mutants have a significant decrease in
expression of epidermal genes as well as genes relating to fin develop-
ment. Additionally, Gene Ontology (GO) term enrichment analyses
show a downregulation in genes relating to cell-matrix adhesion, cell
adhesion, and skeletal muscle fiber development, genes which are
likely to contribute to craniofacial and limb development. However,
further studies exploring these functions have not yet been explored.
Tp63-/- mutant mice display severe craniofacial and limb defects,
including cleft lip and palate, hypoplastic upper and lower jaw, and
limb truncations (Yang et al., 1999). Moreover, it has been shown in
mice that ANpé63 directly regulates the transcription of DIx5/DIx6
(Lo lacono et al., 2008) and Fgf8/Fgf4 (Kawata et al., 2017), which are
all important for both limb and craniofacial development (Figures 2a
and 3d). Therefore, it may be worth revisiting the zebrafish model to
determine whether craniofacial defects are present in tp63—-/-

mutants and if Tpé3 is regulating these key developmental genes.

3.14 | Craniosynostosis and variable limb defects

Craniosynostosis is the second most common craniofacial anomaly

with a prevalence of 1 in 2,500 live births (Boulet, Rasmussen, &

Honein, 2008). Craniosynostosis is the premature fusion of skull
bones at the sutures, or fibrous structures that join the bones, before
the brain has fully formed. As a result, the skull is misshapen. During
normal development, the sutures hold the skull in place while
remaining flexible to allow proper brain growth. The anatomical struc-
ture and molecular mechanisms dictating formation of cranial sutures
is conserved between humans and zebrafish, making them a useful
model for studying craniosynostosis (Quarto & Longaker, 2005). Here,
we will discuss Saethre-Chotzen syndrome and syndromes associated
with mutations in FGFR2.

3.1.5 | Saethre-Chotzen syndrome
Saethre-Chotzen syndrome is an autosomal dominant disorder featur-
ing craniosynostosis, due to loss of the coronal suture, maxillary hypo-
plasia, a high forehead, wide-set eyes, ptosis (droopy eyelids), a broad
nasal bridge, brachydactyly, syndactyly, and polydactyly in the feet
(Chotzen, 1932; Saethre, 1931). It is associated with variants in FGFR2
(see below), FGFR3, and TWIST1 (MIM #101400) (el Ghouzzi et al.,
1997; Howard et al., 1997; Paznekas et al., 1998). Transcription fac-
tors Twistla and Twistlb, the zebrafish orthologs of TWIST1, are
both required for ectomesenchyme specification from NCCs (Das &
Crump, 2012). Knockdown of either gene with morpholinos results in
minor skeletal defects, such as minor hypoplasia of the ventral man-
dibular and hyoid cartilages, but a double knockdown leads to an
almost complete loss of the viscerocranium and loss of pectoral fins
(Das & Crump, 2012). Stable double twist1a—/—;twist1b—/— knockout
mutants created using TALENSs (transcription activator-like effector
nucleases) have a milder phenotype than the morphants and present
with hypoplasia in the Meckel's cartilage, palatoquadrate, and
hyosymplectic cartilage (Teng et al., 2018). Using transgenic models
and the GAL4:UAS system, Das and Crump (2012) show that Twist1
promotes ectomesenchyme cell fates (i.e., cartilage, bones, etc.) in cra-
nial NCCs. These cells primarily make up the craniofacial skeleton.
One of the most distinct phenotypes of Saethre-Chotzen syn-
drome is the selective loss of the coronal suture, which separates the
two parietal bones from the frontal bone in the skull. Teng
et al. (2018) created viable, triple tcf12-/—;twistla—/—;twist1b—/—
mutants that show mild craniofacial phenotypes at 5 dpf but adult
mutants develop severe unilateral or bilateral coronal synostosis.
Juvenile tcf12—/—;twist1b—/— double mutants assessed for minerali-
zation (Calcein green staining), bone (Alizarin red staining), and live-
cell imaging of osteoblasts (sp7:EGFP transgenic line) all show acceler-
ated growth of the frontal and parietal bones in mutants compared to
wildtype. These bones grow diagonally toward one another, becoming
aberrantly shaped and leading to premature fusion, which is consis-
tent with the human phenotype. Premature fusion of the suture pre-
vents bone enlargement and growth of the skull along the anterior/
posterior axis. Finally, using RNAscope in situ hybridization, a recently
developed technique that uses probes to amplify target RNA in intact
cells and tissues, they show that tcf12—/—;twist1b—/— mutants have

reduced expression of skeletal stem cell markers, gli1, gremla, and
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prrx1a in the coronal sutures as well as a decrease in osteoprogenitors
compared to the wildtype. This is true only in the coronal sutures,
suggesting that there is a selective exhaustion of osteoprogenitors in
this region and bone growth has ceased in the mutants (Teng et al.,
2018). These studies demonstrate the importance of twist1 in cranio-
facial development.

twist1 also appears to be required for pectoral fin development,
as suggested by the skeletal preparations for twistla and twist1b
morphants (Das & Crump, 2012). However, the mechanism is not well
understood. In mice, loss of Twistl blocks forelimb growth. It is
required for AER and ZPA maintenance by regulating Fgf and Shh sig-
naling, respectively (O'Rourke, Soo, Behringer, Hui, & Tam, 2002). Fur-
ther studies in zebrafish are needed to determine if these interactions

are conserved in the growing pectoral fin bud.

3.1.6 | FGFR2 syndromes

It is well-known that fibroblast growth factor (FGF) signaling is critical
in many aspects of development. Humans have four tyrosine kinase
FGF receptors (FGFR) than can bind to eighteen different secreted
FGF proteins. Variants in FGFR2 specifically are known to be associ-
ated with several different craniofacial and limb syndromes, including
Apert syndrome (MIM #101200), bent bone dysplasia (MIM
#614592), Jackson Weiss syndrome (MIM #123150), Pfeiffer syn-
drome (MIM #101600), and Saethre-Chotzen syndrome (MIM
#101400) [reviewed in Wenger, Miller, & Evans, 1998-(2020)]. Inter-
estingly, each of these syndromes presents with craniosynostosis and
either brachydactyly or syndactyly. A more detailed description of
phenotypes for each syndrome can be found in Table 1. Mutations in
other FGFRs and secreted FGF proteins are also known to lead to
developmental disorders [reviewed in Wenger et al., 1998-(2020)].

In zebrafish embryos, fgfr2 is expressed in the pharyngeal endo-
derm and hindbrain between 24-72 hpf (Larbuisson et al., 2013) and
in the cranial sutures at 6 weeks post fertilization (Topczewska et al.,
2016). Treatment of embryos between 18-24 hpf with SU5402, an
inhibitor of FGFRs, leads to loss of the pharyngeal arches (Walshe &
Mason, 2003). Injection of morpholinos against fgfr2 leads to hypo-
plastic skeletal structures, including the Meckel's cartilage and palat-
oquadrate, as well as shortened pectoral fins. Additionally,
knockdown of both fgfrla and fgfr2 produces an even more severe
phenotype with loss of the ceratohyal, ceratobranchial arches, neuro-
cranium, and pectoral fins (Larbuisson et al., 2013). In situ RNA
hybridization experiments in single morphants show no changes in
expression of sox9, dix2a, or fli1, suggesting that cranial NCC migra-
tion into the pharyngeal arches is not affected by loss of fgfr2. How-
ever, there is decreased expression of barx1 and runx2b, suggesting
Fgfr2 required for chondrocyte condensation and maturation
(Larbuisson et al., 2013).

Leerberg et al. (2019) generated knockout zebrafish mutants for
single fgfr genes using CRISPR-Cas9. Surprisingly, single homozygous
mutants are viable and mRNA expression levels of non-mutated fgfr

genes are not elevated, suggesting genetic redundancy. fgfrla—/—;

fgfrib—/—;fgfr2—/- triple mutants had the most severe phenotypes in
the limb and craniofacial skeleton. Consistent with the morphant stud-
ies, these mutants had shortened or loss of pectoral fins. By in situ
RNA hybridization, there was a significant decrease in fgf24, fgf8a,
and dIx2a, which are markers of limb outgrowth. The triple mutants
also exhibited severe craniofacial phenotypes, including a loss of the
ceratobranchial arches, ceratohyal, and hyosymplectic cartilage; a
misshapen palatoquadrate; a downward facing Meckel's cartilage; and
a clefted ethmoid plate. This is likely not due to issues with cranial
NCC migration, but rather maintenance of the NCCs (Leerberg
et al., 2019).

Fgf signaling is critical in both craniofacial and limb development.
As shown in these studies and in mouse studies, Fgf signaling is
required in the facial skeleton for early patterning, growth regulation,
tooth growth, palatogenesis, and suture formation [reviewed in Nie,
Luukko, and Kettunen (2006)]. In the limb, it is necessary for
proximodistal outgrowth and regulating the anterior/posterior axis
[reviewed in Mercader (2007). Therefore, mutations in FGFR genes
can lead to syndromes that present with defects in either or both cra-
niofacial and limb structures.

4 | SUMMARY

In this review, we have provided a brief overview of both craniofacial
and limb development and discussed the relevance of using zebrafish
as a model for studying both developmental mechanisms. We then
reviewed studies that have used zebrafish to study human syndromes
that present with both craniofacial and limb defects and attempted to
understand why these defects often occur together. We speculate
that there is a pleiotropic effect, in which a single gene affects more
than one developmental process. Indeed, we have discussed how
many signaling pathways, such as Fgf, Shh, Bmp, and Wnt signaling,
are involved in both craniofacial and limb development. Disruptions to
components of these pathways results in both craniofacial and limb
defects. Moreover, some transcription factors, such as Twist1, Irfé,
and Tp63 have been shown in mice to bind to and regulate genes that
are critical for craniofacial and limb development. Additional studies
are required to show that this is conserved in zebrafish as well. NCCs
and their derivatives, namely melanoblasts and neurons, can be found
in the limb mesenchyme, which may contribute to the similar gene
regulatory networks (Erickson, 1985; Grim & Christ, 1993). It has also
been proposed that there is a deep homology between the craniofa-
cial and limb skeletons. In cartilaginous fishes (Chondrichthyes),
appendages grow out of the gill arches, a structure that later gives rise
to part of the craniofacial skeleton. This led Carl Gegenbaur in 1878
to hypothesize that paired limbs/fins are evolved from the gill arches
(Gegenbaur, 1878). This idea was recently supported by the work of
Gillis and colleagues. In the little skate (L. erinacea), they demonstrated
that chondrichthyan branchial rays and appendages both rely on a
complex interplay between retinoic acid, Shh and Fgf8 signaling to
drive endoskeleton outgrowth and patterning of both the gill arches
and appendages (Gillis, Dahn, & Shubin, 2009; Gillis & Hall, 2016).
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They argue that this is due to a deep homology of the structures.
More recently, they have shown in the little skate that the first gill
arch is composed of NCCs and the fins are made of mesoderm cells,
as expected. Interestingly, the more posterior gill arches are com-
posed of both NCCs and lateral mesoderm cells, suggesting that gills
and fins develop from a common pool of cells that have the potential
to develop into either structure (Sleight & Gillis, 2020). This may
explain why craniofacial and limb patterning are so similar. Despite
the seemingly stark differences between humans and zebrafish, we
have shown that zebrafish have emerged as a powerful tool to study

human craniofacial and limb development.
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